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Background aims:Mesenchymal stromal cells (MSCs) have been shown to improve cardiac function after
injury and are the subject of ongoing clinical trials. In this study, the authors tested the cardiac regener-
ative potential of an induced pluripotent stem cell-derived MSC (iPSC-MSC) population (Cymerus
MSCs) in a rat model of myocardial ischemia-reperfusion (I/R). Furthermore, the authors compared this
efficacy with bone marrow-derived MSCs (BM-MSCs), which are the predominant cell type in clinical
trials.
Methods: Four days after myocardial I/R injury, rats were randomly assigned to (i) a Cymerus MSC group
(n = 15), (ii) a BM-MSC group (n = 15) or (iii) a vehicle control group (n = 14). For cell-treated animals, a total
of 5 £ 106 cells were injected at three sites within the infarcted left ventricular (LV) wall.
Results: One month after cell transplantation, Cymerus MSCs improved LV function (assessed by echocardiogra-
phy) compared with vehicle and BM-MSCs. Interestingly, Cymerus MSCs enhanced angiogenesis without sus-
tained engraftment or significant impact on infarct scar size. Suggesting safety, Cymerus MSCs had no effect on
inducible tachycardia or the ventricular scar heterogeneity that provides a substrate for cardiac re-entrant circuits.
Conclusions: The authors here demonstrate that intra-myocardial administration of iPSC-MSCs (Cymerus
MSCs) provide better therapeutic effects compared with conventional BM-MSCs in a rodent model of myo-
cardial I/R. Because of its manufacturing scalability, iPSC-MSC therapy offers an exciting opportunity for an
“off-the-shelf” stem cell therapy for cardiac repair.
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Introduction

Severe left ventricular (LV) dysfunction after myocardial infarc-
tion (MI) is an important predictor of clinical outcome and is asso-
ciated with increased morbidity/mortality from heart failure (HF)
and sudden cardiac death [1]. Although current therapies for MI
have significantly improved patient survival, there remain a large
proportion who suffer progressive HF. These patients would bene-
fit from novel methods to fundamentally repair the damaged heart
and restore cardiac function. Over the last two decades, substantial
progress has been made in the field of stem cell therapy for cardiac
repair, with research proceeding rapidly from pre-clinical models
to clinical studies [2]. Autologous bone marrow (BM) mononuclear
cells as cell therapy for HF have been investigated in multiple ran-
domized and non-randomized trials over the last 20 years, with
more recent trials not showing significant clinical benefit [3�12].
In contrast to autologous strategies, allogeneic cell therapy offers
an efficient way to achieve immediate availability, thus avoiding
the need for aspiration and tissue culture delays before BM aspira-
tion [13]. As such, allogeneic BM-derived mesenchymal stromal
cells (BM-MSCs) have recently emerged as the leading candidate
for an “off-the-shelf” therapeutic agent. MSCs (also called
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mesenchymal stromal cells) are considered immune-privileged
and can be expanded in quantities unattainable from an autolo-
gous source [14]. The POSEIDON clinical trial was the first to dem-
onstrate that the rate of alloimmune reactions in patients
receiving allogeneic MSCs in ischemic LV was low, suggesting that
allogeneic MSC transplantation may be accomplished without the
need for host immunosuppression [15]. Although it was not pow-
ered to show efficacy, this study showed that allogeneic immune
MSC treatment provided beneficial effects in adverse LV remodel-
ing in patients with ischemic cardiomyopathy, offering an off-the-
shelf, readily available cell product. Multiple mechanisms have
been proposed for the beneficial effects of MSCs, including multi-
directional differentiation potential and paracrine factor secretion
with anti-apoptotic, pro-angiogenic and immunomodulatory
effects [14].

Despite rapid clinical translation and widespread enthusiasm, the
isolation of BM-MSCs is cumbersome and dependent on a continual
supply of healthy donors. Induced pluripotent stem cells (iPSCs), by con-
trast, have the capacity to indefinitely proliferate without losing pluripo-
tency and to maintain normal karyotype [16]. Harnessing the expansion
potential of iPSCs prior to differentiation enables the production of very
large numbers of MSCs from a single iPSC line, thus affording
manufacturing feasibility and scalability [17]. In fact, iPSC-derived MSCs
(iPSC-MSCs) have already reached the clinical trial stage. Cynata Thera-
peutics Limited (Melbourne, Australia) has recently completed a phase
1 clinical trial of allogeneic mesenchymal angioblast-derived MSCs
(Cymerus MSCs) [17,18] for steroid-resistant graft-versus-host disease
(NCT02923375) demonstrating safety and a signal for efficacy, with
phase 2 trials expected to commence in 2021.

Given the efficacy of BM-MSC cardiac cell therapy, the authors
hypothesized that transplantation of iPSC-MSCs following MI would
result in improved cardiac function, with therapeutic effects correlat-
ing with cellular paracrine secretion. The aim of this study was to
assess the engraftment potential, safety and cardiac reparative effi-
cacy of iPSC-MSCs after transplantation into the infarcted rat heart
(benchmarked against BM-MSCs used in clinical trials).
Methods

Cell culture

Human BM-MSCs were cultured on standard tissue culture plates
(TCPs) in the presence of Minimum Essential Medium alpha, 1% Gluta-
MAX 100£, 100 U/mL penicillin and 100 mg/mL streptomycin (Thermo
Fisher Scientific, Waltham, MA, USA) as well as 20% fetal bovine serum
(Bovogen Biologicals Pty Ltd, Melbourne, Australia). Cymerus MSCs
were provided by Cynata Therapeutics Limited and produced as previ-
ously described [18]. The process is highly efficient, yielding a homoge-
neous population of CD105+, CD73+, CD90+, CD43/45�, CD31� and
HLA-DR� MSCs. Cymerus MSCs at passage five were used in this study
based on previously published clinical studies showing that this passage
level facilitates the production of a workable batch size while remaining
below the limit of the cells’ expansion potential [17].
Figure 1. Main study timeline. Schematic diagram showing the overall animal study design u
R, ischemia-reperfusion. (Color version of figure is available online).
Angiogenic cytokine array

Cells were detached from the TCPs using Accutase (Gibco, Carls-
bad, CA, USA) and seeded at 5000 cells/cm2 density on a 12-well plate
in Dulbecco’s Modified Eagle’s Medium (DMEM) low glucose (Gibco)
with 10% fetal bovine serum and penicillin/streptomycin and incu-
bated at 37°C and 5% carbon dioxide for 2 days. Conditioned media
from each group were then collected and used to perform the angio-
genic cytokine array test. A human angiogenesis antibody array—
membrane (20 targets) (ab134000; Abcam, Cambridge, UK) was used
for the detection of cytokines secreted by cells in the culture media
(conditioned media) following the manufacturer’s instructions.
Briefly, membranes were first blocked with blocking buffer and then
incubated overnight with conditioned media at 4°C. After overnight
incubation of first biotinylated antibody cocktail and then horserad-
ish peroxidase-conjugated streptavidin, cytokines were detected
using ChemiDoc (Bio-Rad Laboratories, Inc, Hercules, CA, USA) by
exposing the membranes at 2.0-s chemiluminescence exposure. After
imaging, samples were analyzed using the Gilles Carpentier protein
array analyzer for ImageJ macro (https://imagej.nih.gov/ij/macros/
toolsets/Protein%20Array%20Analyzer.txt).

Cell preparation for intra-myocardial cell injection

Cymerus MSCs were prepared from clinical-grade iPSCs and pro-
vided by Cynata Therapeutics Limited. Briefly, iPSCs were derived from
CD34-enriched peripheral blood mononuclear cells using an episomal
plasmid-based, transgene-free, viral-free and feeder layer-free reprog-
ramming procedure prior to differentiating and expanding in culture
[19]. Upon receipt, cells were stored in liquid nitrogen. Before cell injec-
tion, cryopreserved human Cymerus MSCs were thawed in a 37°C
water bath and washed twice with Plasma-Lye A solution (Baxter
Healthcare Corporation, Deerfield, IL, USA), an electrolyte solution
known to be compatible with cells [20]. A total of 5 £ 106 cells were
then resuspended in 100 mL of Plasma-Lye solution. Cells were kept
cold on ice until administration to animals. BM-MSCs were purchased
from AllCells (Alameda, CA, USA). Cryopreserved BM-MSCs were
washed twice in DMEM and resuspended at the same density as Cyme-
rus MSC derivatives (5 £ 106 cells per 100 mL).

MI induction and cell transplantation

All animal procedures were approved by the Western Sydney
Local Health District Animal Care and Ethics Committee (protocol
identifier, 4214.02.14). Studies were conducted in male nude rats
(CBH-RNU, 8�12 weeks). For all procedures, animals were anesthe-
tized with 2% isoflurane and 0.2 L/min oxygen, endotracheally intu-
bated and mechanically ventilated. Details of the randomized main
study design are shown in Figure 1. At day �4, animals were anesthe-
tized and underwent thoracotomy. MI was induced by ligation of the
left anterior descending artery for 60 min followed by reperfusion
[21,22]. Successful infarction was determined by blanching of the
myocardium distal to the coronary ligation. Four days after ischemia-
sed to test the therapeutic benefits of Cymerus MSCs in a rat model of myocardial I/R. I/
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reperfusion (day 0), animals were randomly assigned to three
groups: (i) MI + Plasma-Lye group (vehicle control, n = 14), (ii)
MI + Cymerus MSC group (Cymerus MSCs, n = 15) and (iii) MI + BM-
MSC group (BM-MSCs, n = 15). Animals underwent intra-myocardial
injection of cells (5 £ 106 in 100 mL Plasma-Lye) or vehicle controls
(100 mL Plasma-Lye only) at three injection sites into infarct and bor-
der zones. Echocardiography and programmed electrical stimulation
(PES) were conducted to assess for functional changes and arrhyth-
mogenicity, respectively. Animals were killed on day 28, and hearts
were excised for subsequent histological analysis.

Echocardiography

All rats underwent baseline echocardiography prior to commence-
ment of experimental protocols. Echocardiographic studies were
repeated 4 days post-MI (before cell injection) and 28 days following
cell injection using a Philips ultrasound system (Philips Healthcare, And-
over, MA, USA). Systolic function was measured by calculating the frac-
tional shortening (FS) percentage derived from LV end-diastolic
diameter and LV end-systolic diameter measurements in the paraster-
nal short-axis view using M-mode tracings. All measurements were
conducted by operators blinded to the treatment groups.

Programmed electrical stimulation

PES was performed at day 28 to assess animals at risk of sudden
cardiac death. A 5Fr octopolar catheter (Biosense Webster Inc, Irvine,
CA, USA) was placed transesophageally and advanced until ventricular
electrogram was obtained. PES was performed using an electronic pulse
stimulator (model 2100; A-M Systems, Sequim, WA, USA) based on a
previously published PES protocol [23]. A drive train (S1S1) of eight
beats at 180 ms was followed by four extrastimuli delivered one at a
time. Initial extrastimuli were delivered at a coupling interval of
150 ms, which was then decremented by 10 ms until ventricular refrac-
toriness. In the absence of ventricular tachycardia (VT) inducibility, a
more rigorous protocol with burst ventricular pacing at cycle lengths of
90 ms and 60 ms was administered for 30 s. Sustained VT was defined
as monomorphic or polymorphic wide complex tachycardia lasting
greater than 10 s, induced by four or more extrastimuli or ventricular
burst pacing, and was considered a positive result.

Morphometric and histological studies

Following euthanasia on day 28, infarcted hearts were harvested,
fixed in 10% formalin, embedded in paraffin and then sectioned at 4-
mm thickness for G€om€ori trichrome staining. Images were digitally
scanned using a NanoZoomer (Hamamatsu Photonics, Hamamatsu,
Japan). Infarct size (as a percentage of LV) was analyzed using com-
puterized planimetry as previously described [24].

Cell engraftment studies

Engraftment and survival of transplanted cells were analyzed at 1
week (non-infarcted hearts) and 1 month (infarcted hearts) post-cell
injection by immunofluorescence using a mouse anti-human mito-
chondrial antibody at 1:1000 (ab92824; Abcam), allowing specific
detection of cells of human origin.

Determination of capillary and arteriolar density

Capillary and arteriolar densities of heart sections immunostained
with von Willebrand factor (vWF) and alpha smooth muscle actin
(a-SMA), respectively, were assessed 28 days after cell injection.
Capillaries were defined as vessels stained with vWF, and four or
more 40,6-diamidino-2-phenylindole-positive cells in the endothe-
lium and arterioles were considered to be structures containing vWF
co-localized with a-SMA [21,25]. Sections were counterstained with
40,6-diamidino-2-phenylindole. Five regions within the infarct, bor-
der and remote zones of each animal (n = 14 per group) were ana-
lyzed. Results were expressed as capillaries and arterioles per high-
power field.

Statistical analysis

All data are expressed as mean § standard error of the mean. Nor-
mal distribution was assessed using the Shapiro�Wilk test. One-way
analysis of variance was used for analysis of multiple groups using
SigmaPlot 12.5 software (Systat Software Inc, San Jose, CA, USA).
Post-hoc analysis was performed with the Holm��Síd�ak test. P < 0.05
was considered statistically significant.

Results

Fate of transplanted Cymerus MSCs and BM-MSCs

To investigate the engraftment potential of Cymerus MSCs with
direct comparison to BM-MSCs (n = 3 per group), the authors per-
formed a pilot study, injecting 5 £ 106 cells into the non-infarcted
hearts of nude rats. One week following cell injection, transplanted
human cells could be detected at the graft sites of Cymerus MSCs
(Figure 2A,B). However, similar to BM-MSCs (data not shown), trans-
planted Cymerus MSCs were not evident at day 28, suggesting lack of
survival and engraftment of transplanted cells.

Cymerus MSCs improve LV function 1 month post-MI

LV function was assessed by FS using echocardiography (Figure 3A)
at day �4 (pre-infarct), day 0 (pre-cell injection) and day 28. FS was
comparable at day 0 (Cymerus MSCs, 27.95 § 4.9%, BM-MSCs, 27.29 §
4.6%, vehicle, 25.63 § 4.1%, P = 0.78), indicating comparable infarct size
at baseline. One month following cell injection, FS was significantly
enhanced in animals treated with Cymerus MSCs (30.69 § 1.13% versus
26.08 § 1.32% in vehicle, P = 0.01) but not in those that received BM-
MSCs (25.19 § 1.26% versus 26.08 § 1.32% in vehicle, P = 0.63)
(Figure 3B). Moreover, LV dimensions revealed a significant reduction
in LV end-systolic diameter (Cymerus MSCs, 0.53 § 0.01 cm, BM-MSCs,
0.58 § 0.01 cm, vehicle, 0.56 § 0.01 cm, P = 0.05) but not LV end-dia-
stolic diameter (Cymerus MSCs, 0.77 § 0.01 cm, BM-MSCs, 0.78 §
0.01 cm, vehicle, 0.76 § 0.01 cm, P = 0.205] (Figure 3C,D). These find-
ings suggested that intra-myocardial injection of Cymerus MSCs post-
MI improved cardiac contractility over a short time frame.

MSCs have no effect on scar size after MI

Large animal and early clinical data in subjects with ischemic cardio-
myopathy support the ability of MSCs to impact cardiac function and
induce reverse remodeling [15,26,27]. Therefore, to determine whether
scar size had an effect on functional improvement with Cymerus MSCs,
collagen content was quantified by G€om€ori trichrome staining. Unex-
pectedly, the extent of histological fibrosis did not differ between the
Cymerus MSC, BM-MSC and vehicle groups (Figure 4A,B), suggesting an
alternate mechanism for the functional improvement.

Transplanted Cymerus MSCs are not arrhythmogenic in the infarcted
heart

The risk of cardiac arrhythmias poses a potentially life-threaten-
ing problem following cell transplantation [28,29]. Hence, the
authors tested cardiac electrical vulnerability in vivo by performing
burst and extrastimulus ventricular pacing protocols. As shown in
Figure 5A, PES was conducted 4 weeks after cell transplantation to
assess for potential inducible tachyarrhythmias. There was no



Figure 2. Cymerus MSC pilot engraftment studies. (A) LV cross section stained with H-E, with approximate areas of Cymerus MSC injection at three sites in the anterior wall of the
non-infarcted heart shown. (B) Immunofluorescence images showing human mitochondria (green) detected at 7 days but not 28 days after cell transplantation. H-E, hematoxylin
and eosin. (Color version of figure is available online).
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difference in the percentage of VT between the groups (Cymerus
MSCs, 14.2 § 0.3%, BM-MSCs, 12.6 § 0.2%, vehicle, 13.1 § 0.2%,
P = 0.94) (Figure 5B). To determine whether there was a difference in
distribution of fibrosis (architectural organization of myofibers inter-
spersed with collagen), “heterogeneity index” [25,30] was assessed.
There was no difference in the heterogeneity of conducting colla-
gen myofibers (Cymerus MSCs, 0.47 § 0.07 cells/mm2, BM-MSCs,
0.45 § 0.05 cells/mm2, vehicle, 0.46 § 0.06 cells/mm2, P = 0.61)
(Figure 5C), suggesting that Cymerus MSCs did not provide an
anatomic substrate for re-entrant ventricular arrhythmias. This
finding provided an important signal for the safety of this poten-
tial cardiac therapy.

Local injection of Cymerus MSCs promotes vasculogenesis in the post-MI
heart

Because of the known angiogenic potential of MSCs and lack of
mechanistic insight into the functional improvement with Cymerus
MSCs, the authors sought to determine the effects of cell transplanta-
tion on the post-MI vasculature. The authors measured capillary and
arteriolar density in the peri-infarct and remote zones (represen-
tative images of peri-infarct zone shown in Figure 6A). As
expected, the authors observed a higher number of capillaries
(vWF+) in both the peri-infarct Cymerus MSC and BM-MSC-
treated groups (Cymerus MSCs, 296 § 41 cells/mm2 versus vehi-
cle, 140 § 44 cells/mm2, P = 0.001 and BM-MSCs, 290 § 44 cells/
mm2 versus vehicle, 140 § 44 cells/mm2, P = 0.003) (Figure 6B).
Interestingly, however, immunostaining with a-SMA showed that
Cymerus MSCs (but not BM-MSCs) enhanced arteriogenesis in the
peri-infarct zone (Cymerus MSCs, 16 § 2 cells/mm2 versus vehi-
cle, 6 § 2 cells/mm2, P < 0.0001 and BM-MSCs, 10 § 2 cells/mm2

versus vehicle, 6 § 2 cells/mm2, P = 0.09 and Cymerus MSCs, 16
§ 2 cells/mm2 versus BM-MSCs, 10 § 2 cells/mm2, P = 0.01)
(Figure 6C). Moreover, the presence of small diameter (6�10 mm)
arterioles (Figure 6D) in the Cymerus MSC group suggested arteri-
olar branching and sprouting of microvessels.



Figure 3. Cymerus MSCs improve LV function after MI. (A) Representative M-mode echocardiographic images showing LV wall motion. (B�D) FS, LVESD and LVEDD are similar
between the groups at 4 days prior and day of cell transplantation (day �4 and day 0). Compared with the BM-MSC and vehicle groups, FS significantly improved in Cymerus MSC-
treated animals, whereas LVESD decreased at day 28 after cell transplantation. All data are presented as mean § SEM. A two-tailed, unpaired Student’s t-test was used to compare
between any two groups. One-way ANOVA followed by Holm��Síd�ak post-hoc test was used to adjust for multiple comparisons. **P < 0.05, nsP = 0.205. ANOVA, analysis of variance;
LVEDD, LV end-diastolic diameter; LVESD, LV end-systolic diameter; SEM, standard error of the mean. (Color version of figure is available online).

Figure 4. MSCs do not affect scar size after MI. (A) Representative G€om€ori trichrome-stained myocardial section of animals 4 weeks after MI. Blue, fibrotic scar tissue; red, viable
myocardium. Scale bar = 5 mm. (B) Scar quantification showed no difference in scar size between the groups at day 28 (n = 15 per group in Cymerus MSCs and BM-MSCs, n = 14 in
vehicle). All data are presented as mean § SEM. A two-tailed, unpaired Student’s t-test was used to compare between any two groups. One-way ANOVA followed by Holm��Síd�ak
post-hoc test was used to adjust for multiple comparisons. nsP = 0.61. ANOVA, analysis of variance; SEM, standard error of the mean. (Color version of figure is available online).
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Differential cytokine expression profile may explain disparities in
angiogenesis and cardiac function between groups

The beneficial effects of MSC transplantation are attributable to
the capacity of MSCs to secrete a wide range of cytokines, chemo-
kines and growth factors [31]. To better understand the differential
angiogenic effects of Cymerus MSCs compared with BM-MSCs in the
post-MI microenvironment, the authors performed protein arrays,
probing the secretory profile of each cell type. The expression of 20
different cytokines, chemokines and growth factors in Cymerus MSC-
and BM-MSC-conditioned media was compared. Both cell types were
cultured for 2 days in standard culture media to minimize the influ-
ence of the media on protein profile. Figure 7A represents a heat map
of protein expression normalized to positive control of the assay (bio-
tin-conjugated IgG). Both cell types showed similar cytokine profile
expression, which resulted from appropriate derivation of Cymerus
MSCs from iPSCs. However, the degree of expression differed from 2-
to 4-fold for a number of cytokines, which may be responsible for the
enhanced neovascularization. Cymerus MSCs demonstrated expres-
sion of IL-8; tissue inhibitor of metalloproteinases (TIMP) 1 and
TIMP-2; growth-related oncogene (GRO); regulated upon activation,
normal T cell expressed and presumably secreted (RANTES); and



Figure 5. Cymerus MSCs do not provide an anatomic substrate for arrhythmias. (A) Example of monomorphic VT induced by PES in infarcted rats. (B) Quantification of inducible VT
(n = 11 in Cymerus MSCs, n = 12 in BM-MSCs, n = 10 in vehicle). (C) Assessment of myocardial scar tissue heterogeneity. Histological cross section of myocardium from the vehicle
group indicating myocardial fibrosis (blue) of the lateral LV wall based on G€om€ori trichrome tissue differentiation (top left), automated threshold-based detection of scar tissue (top
middle) and scar tissue cluster intensity map based on neighborhood distance of collagen (Hi) (top right). Histogram of scar tissue clustering (Hi) and illustrated description of scar
heterogeneity (Hd) quantitation (bottom left). Quantification of heterogeneity index (bottom right). All data are presented as mean § SEM. One-way ANOVA followed by
Holm��Síd�ak post-hoc test was used to adjust for multiple comparisons. nsP = 0.94. ANOVA, analysis of variance; ROI, region of interest; SEM, standard error of the mean. (Color ver-
sion of figure is available online).
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vascular endothelial growth factor (VEGF) D to a higher degree,
whereas BM-MSCs showed increased expression of IL-6, IL-8 and
TIMP-1 and TIMP-2.

When comparing the fold change expression of each protein
between the two cell types, upregulation of epidermal growth factor,
IL-8, GRO, epithelial neutrophil-activating peptide (ENA) 78, basic
fibroblast growth factor (b-FGF), leptin and RANTES and downregula-
tion of VEGF, IL-6, thrombopoietin, TIMP-1 and TIMP-2 were seen in
the Cymerus MSC group compared with the BM-MSC group. In par-
ticular, Cymerus MSCs showed a 4-fold upregulation of GRO and an
approximately 2-fold upregulation of IL-8 and b-FGF (Figure 7B).
Downregulation of angiogenesis inhibitors (TIMP-1 and TIMP-2) was
also seen in Cymerus MSCs. Cytokines found to be upregulated and
downregulated in Cymerus MSCs (compared with BM-MSCs) are
listed in Table 1, with a description of their angiogenic role.

Discussion

Human MSCs have emerged as a promising cell type in regenera-
tive medicine. However, they have several potential shortcomings,
including a finite proliferative capacity, necessitating a continual sup-
ply of healthy donors [41,42]. The breakthrough of iPSC technology
now enables adult somatic cells to be reprogrammed into bona fide
PSCs [43,44]. By harnessing iPSCs, it is now possible to generate
potentially limitless MSC-like cells from a single human donor [43].
The authors performed this study to test the feasibility of intra-



Figure 6. Cymerus MSCs promote vasculogenesis in the post-MI heart. (A) Representative fluorescence images with the presence of vWF+ (red), SMA+ (green) and DAPI (blue) cells
in the peri-infarct zone (scale bar = 50mm), showing that the (B) Cymerus MSC and BM-MSC groups enhance capillary density compared with vehicle at day 28 following cell trans-
plantation (n = 14 per group). (B,C) Long and short horizontal black lines indicate means and SEMs, respectively. (C,D) Quantitative analyses of a-SMA+ vasculature show increased
arteriolar density (small- and medium-sized vessels) in Cymerus MSC-treated animals compared with vehicle and BM-MSC groups (n = 14 per group). All data are presented as
mean § SEM. One-way ANOVA was used to test for multiple comparisons. *P < 0.05, **P < 0.005, ***P < 0.0005, nsP = 0.09. ANOVA, analysis of variance; DAPI, 40 ,6-diamidino-2-phe-
nylindole; FOVs, fields of view; SEM, standard error of the mean. (Color version of figure is available online).
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myocardial cell transplantation of iPSC-derived MSCs in a rodent
model of MI. In this work, the authors successfully demonstrated that
Cymerus MSCs (compared with BM-MSCs) (i) significantly improve
LV function despite lack of long-term engraftment, (ii) promote vas-
culogenesis via upregulation of pro-angiogenic factors and (iii)
exhibit a safe cardiac electrophysiological profile.

The retention of regenerative cells and, moreover, engraftment
potential have been shown to be fundamental to producing a mean-
ingful therapeutic effect [45]. However, pre-clinical and clinical
observations suggest that MSC transplantation can result in robust
beneficial effects, including improved contractile function, stimula-
tion of angiogenesis and decreased fibrosis despite rather low
engraftment rates [45,46]. In a previous acute MI model in pigs,
retention of mesenchymal-like stem cells was higher than that of
BM-derived mononuclear stem cells [47], yet within 1 h after intra-
myocardial injection the majority of administered cells had left the
heart. Hence, the authors’ finding of lack of BM-MSC engraftment at 1
month was not surprising. Cymerus MSCs represent a promising cell
type not yet tested for cardiac therapeutic indications, and therefore
cell engraftment potential was unknown. The authors’ results dem-
onstrate that Cymerus MSCs, like BM-MSCs, do not display prolonged
persistence following intra-myocardial administration after MI.

Despite the absence of long-term engraftment in both BM-MSC
and Cymerus MSC groups, cardiac functional change differed
between the groups. Interestingly, cardiac function was similar in the
BM-MSC- and vehicle-treated groups at 1 month. By contrast, Cyme-
rus MSC treatment of the infarcted rat heart in the authors’ study
resulted in a significant improvement in cardiac function at 1 month
despite no reduction in scar size. Meta-analyses using BM-derived
progenitor and stem cells (not focused exclusively on MSCs) have
demonstrated inconsistent results in the clinic [48]. The absence of
standard protocols and differences in timing of cell delivery, delivery
method, follow-up and cell processing could explain the variability in
performance between MSCs derived from different donors. The het-
erogeneity of the trials highlights the lack of standardization and
demonstrates the great need for large-scale trials showing efficacy
prior to moving this field into mainstream medical practice.

There is growing evidence that the beneficial effects of MSC trans-
plantation in the infarcted heart are related to paracrine impact on
endogenous cells, resulting in increased angiogenesis and enhanced
cell survival [49,50]. The stimulation of angiogenesis is accepted as
essential for tissue repair [51]. New vessel formation is initiated by
the activation of quiescent vessels in response to angiogenic signals
instigated by cytokines and chemokines. Following MI, the lack of
oxygen and nutrients precipitates an inflammatory response to
enable cardiac repair. Innate immune system cells, including neutro-
phils and monocytes, release angiogenic factors such as VEGF, IL-8,
tumor necrosis factor alpha, hepatocyte growth factor and matrix
metalloproteinases [52], which play an important role in new vessel
formation. In this respect, MSCs contribute to this phenomenon by
releasing paracrine angiogenic signals to recruit monocytes such as
RANTES (also known as CCL5), resulting in the release of factors sup-
porting the proliferation of endothelial cells and promoting vasculo-
genesis [33]. The authors’ results show an upregulation of RANTES



Figure 7. Differential angiogenic cytokine profiles between Cymerus MSCs and BM-MSCs.
(A) Heat map of cytokine expression in conditioned media of Cymerus MSCs and BM-MSCs shown as signal intensities normalized to positive control (biotin-conjugated IgG)

signal intensity. (B) Fold change (Log1.5) of upregulated (left) and downregulated (right) cytokines expressed in Cymerus MSCs compared with BM-MSCs. EGF, epidermal growth
factor; ENA, epithelial neutrophil-activating peptide; b-FGF, basic fibroblast growth factor; GRO, growth-related oncogene; IFN-g , interferon gamma; IGF-1, insulin-like growth fac-
tor 1; IL, interleukin; MCP-1, monocyte chemoattractant protein 1; PDGF-BB, platelet-derived growth factor BB; PIGF, placental growth factor; TGF-b1, transforming growth factor
beta 1; TIMP, tissue inhibitor of metalloproteinases; VEGF, vascular endothelial growth factor; Max, maximum; Min, minimum. (Color version of figure is available online).

Table 1
List of cytokines expressed differently in Cymerus MSCs compared with BM-MSCs.

Cytokine Angiogenic role

GRO Recruits angioblasts together with IL-8 in MI areas [32]
IL-8 Pro-angiogenic [32]
RANTES (CCL5) Recruits monocytes for new vessel formation [33]
Leptin Promotes vascular tubule formation [34]
b-FGF Induces vascular regeneration by recruiting and inducing

proliferation of ECs [35]
ENA-78 (CXCL5) Promotes angiogenesis by recruiting neutrophils to the

area
EGF Anti-apoptotic; enhances MSC proliferation and survival

[34]
IFN-y Promotes angiogenesis
IL-6 Promotes endogenous repair by CFs and macrophages to

increase generation of new cardiomyocytes and pro-
genitor cells and to rescue apoptotic cells after MI [36]

VEGF Angiogenesis stimulator that acts by recruiting ECs in the
initial stage of the angiogenic response; activity is con-
nected to IL-6 release [37]

Thrombopoietin Promotes angiogenesis by stimulating VEGF expression in
hypoxia conditions [38,39]

TIMP-1 and TIMP-2 Negative regulators of angiogenesis [40]

CFs, cardiac fibroblasts; ECs, endothelial cells; EGF, epidermal growth factor; IFN-y,
interferon gamma.
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and other pro-angiogenic factors, such as b-FGF, epidermal growth
factor, interferon gamma and IL-8, in Cymerus MSCs compared with
BM-MSCs. Given a degree of MSC engraftment retention of up to 1
week post-infarction—and within a potential critical phase of LV
remodeling—these data provide a rationale for the increased angio-
genesis after transplantation of Cymerus MSCs into the infarcted
heart.

Interestingly, IL-8 and GRO, which showed the highest fold
change between the two cell types, appear to be chemoattractants of
angioblasts following MI. Cardiac endothelial cells increase produc-
tion of the IL-8/GRO-alpha CXC chemokine family, providing a che-
moattractant gradient for angioblasts, which are precursors of
Cymerus MSCs [32]. In fact, Cymerus MSCs are generated from iPSCs
and chemically induced to differentiate into spherical mesenchymal
angioblast colonies, which are then harvested and used as precursor
cells of both MSCs and endothelial cells. The upregulation of ENA-78
seen with Cymerus MSCs may arise from the fact that iPSCs are capa-
ble of indefinite proliferation. These iPSCs in turn provide a poten-
tially infinite source of mesenchymal angioblasts that can then
expand into extremely large quantities of MSCs, whereas other types
of MSCs have not shown this capability. ENA-78 encodes for the pro-
tein CXCL5, which is known to increase vasculogenesis [53]. The
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upregulation of ENA-78 seen with Cymerus MSCs may arise from
their identity as a more upstream progenitor of vascular and stro-
mal cells compared with their counterpart MSCs derived from
adult tissue sources. This may account for the increased vasculo-
genic potential of Cymerus MSCs compared with BM-MSCs seen
in the authors’ study. This is of paramount importance from a
clinical translational perspective.

With regard to the general cytokine profile, both Cymerus MSCs
and BM-MSCs showed high expression of TIMP-1 and TIMP-2, which
have previously been reported to be vasculogenesis inhibitors. This
may be explained by culture of cells on stiff TCPs. It has been previ-
ously reported that adherent cells in an in vitro culture environment
express metalloproteinases and TIMPs, such as TIMP-1 and TIMP-2,
because of the mechanophysical stimuli received from the substrate
they are cultured on [40]. TIMP-2 has also been associated with in
vitro inhibition of endothelial cell proliferation through a mechanism
independent of its role in metalloproteinase inhibition [54]. The high
stiffness of TCPs could be more similar to injured tissue, such as
infarcted heart tissue, as opposed to the stem cell niche in which
MSCs usually reside. In the authors’ study, both TIMP-1 and TIMP-2
were downregulated in Cymerus MSCs compared with BM-MSCs.
Although these in vitro experiments cannot recapitulate the in vivo
environment, these data suggest that the better angiogenesis seen
after transplantation of Cymerus MSCs may be TIMP-mediated. VEGF
was the first vascular-specific growth factor to be characterized and
is widely accepted as the essential driver of vasculogenesis [55]. Simi-
larly, IL-6 is known to stimulate angiogenesis [56,57]. Interestingly,
VEGF and IL-6 were downregulated in Cymerus MSCs compared with
BM-MSCs (Figure 7B), suggesting that the increased angiogenesis
observed with Cymerus MSCs after in vivo transplantation is not
mediated by VEGF or IL-6.

Although cell-based therapies for cardiac repair have progressed
from proof-of-concept to randomized clinical trials, arrhythmogene-
sis has always been a feared complication [58]. Limited pre-clinical
work demonstrated varied arrhythmic effects that may be explained
by the types of stem cells (skeletal myoblasts, BM-derived cells) and
different routes of administration used [59,60]. Early clinical studies
with skeletal myoblast implants then set a precedent that endocar-
dial stem cell injections may provoke arrhythmia due to heteroge-
neous conduction and repolarization, which could serve as a
substrate for arrhythmia [61]. The authors’ study showed that cardiac
transplantation of Cymerus MSCs (and BM-MSCs) did not increase
cardiac arrhythmogenicity compared with the vehicle-treated group.
This is in keeping with data sets from the POSEIDON and TAC-HFT
randomized clinical trials demonstrating no pro-arrhythmic effects
from MSC transplant occurring in either the short term (within days)
or long term (up to 1 year) [45,58,62]. Moreover, the lack of pro-
arrhythmia seen with Cymerus MSCs is a promising result despite
the higher resting heart rate in rodents [63], which could potentially
affect the electromechanical function of implanted cells. In contrast
to MSCs, PSC-derived cardiomyocytes have had significant barriers to
translation, as evidenced by graft-related tachyarrhythmias despite
significant remuscularization [28,29].

The limitations of this study are important to consider. Firstly,
experiments to investigate any possible effects caused by different
vehicles used for the different cell groups (Plasma-Lyte used for
Cymerus MSCs and DMEM medium for BM-MSCs) was not per-
formed. Further in vivo and in vitro experiments are required to
assess the effects of Plasma-Lye and/or DMEM on functional outcome,
vasculogenesis and cytokine profile. Second, although the improve-
ment in LV function seen with Cymerus MSCs may be related to a
pro-arteriogeneic response, further mechanistic studies are required
to determine whether other factors, such as immunomodulatory
effects and scar alignment, may play a role in the therapeutic effect
[64�69]. Long-term studies in a large animal model and/or human
clinical trial are required to definitely test cell retention strategies,
confirm functional improvements and assess safety. Nevertheless,
these proof-of-concept studies demonstrate feasibility and pave the
way for future translational studies designed for regulatory approval
of this therapy.

Conclusions

The authors have demonstrated that intra-myocardial administra-
tion of iPSC-MSCs (Cymerus MSCs) provides a better therapeutic
effect compared with conventional BM-MSCs in a rodent model of
MI. In the absence of engraftment, the therapeutic effects of Cymerus
MSCs in vivo appear to be related to their ability to improve neovas-
cularization via paracrine mechanisms. In vitro studies using serum-
free conditioned medium of Cymerus MSCs show a pro-angiogenic
secretory profile with an upregulation of pro-angiogenic factors and
downregulation of metalloproteinases (TIMP-1 and TIMP-2). Given
manufacturing and scalability advantages, iPSC-MSC therapy offers
an exciting opportunity for “off-the-shelf” stem cell therapy, render-
ing it an attractive cell type for cardiac repair.
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