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Abstract
Rapid advances in biology have led to the establishment of new fields with tremendous translational potential including regen-

erative medicine and immunoengineering. One commonality to these fields is the need to extract cells for manipulation in vitro;

however, results obtained in laboratory cell culture will often differ widely from observations made in vivo. To more closely emulate

native cell biology in the laboratory, designer engineered environments have proved a successful methodology to decipher the

properties of the extracellular matrix that govern cellular decision making. Here, we present an overview of matrix properties that

affect cell behavior, strategies for recapitulating important parameters in vitro, and examples of how these properties can affect

cell and tissue level processes, with emphasis on leveraging these tools for immunoengineering.
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Introduction

Since the advent of in vitro cell culture in the early 20th
century, epitomized by Harrison’s development of the
hanging drop technique to observe nerve fiber growth in
1907, it has provided a convenient, cost-effective method
to study specific cell lines in minimal simplified growth
conditions, free of many of the outside influences seen
in vivo. This allows for isolation of single cell lines to inves-
tigate their properties, testing the effects of various pharma-
cological agents on specific cell types and a multitude of
other applications under well-controlled conditions.
However, these advantages come at a price; due to the dif-
ferences between in vitro and in vivo cell culture conditions,
cell characteristics change with long term in vitro culture.
Cells adapt to the different culture conditions by changing
their behavior and activities.1

With the accumulating evidence of the role that physical
and mechanical factors such as forces,2 shape,3 and archi-
tecture4 play in regulating cell behavior, the divide between
in vitro cell culture and in vivo environments presents an
obstacle to studying and manipulating cells in the labora-
tory. There have been several advances in materials and
fabrication techniques that have allowed for modulation
of the extracellular matrix (ECM) available to cells during
in vitro culture. In fact, cells reside in very complex and
dynamic extracellular matrices,5–8 with very specific

compositions, ligand presentations, mechanical properties,
and organization that vary between different tissues.9

Extracellular factors strongly influence many facets of cell
behavior such as homeostasis,10,11 morphogenesis,12,13 self-
renewal and differentiation of stem cells,14 development,6,15

and disease.15,16 It thus becomes clear that, in order to be
able to more fully study cell behavior in vitro, cell culture
platforms in which these factors can be recapitulated and/
or manipulated must be developed.17

Although methods to confine cells to specific shapes have
been demonstrated since 1967,18 the more recent spread of
lithographic,19 microfluidic,20 and other patterning tech-
niques have made micropatterning of cells much more con-
venient and accessible. The increasing use of both natural
and synthetic soft materials21–23 have allowed for manipula-
tion of the form and mechanical properties of the ECM as
well as ligand presentation. ECM proteins and synthetic pep-
tides enable more precise study of specific cell–ECM inter-
actions.5 Degradable24 and dynamically tunable25 platforms
elucidate how cells react to changes in their microenviron-
ments. Techniques such as 3D printing26 and nanopattern-
ing27 allow for investigating processes on tissue and
subcellular scales, respectively. These advances, along with
others, have enabled engineered in vitro environments to be
much more accurate model systems for in vivo processes,
yielding considerable insights on cellular behavior.16,28

ISSN: 1535-3702 Experimental Biology and Medicine 2016; 241: 930–938

Copyright � 2016 by the Society for Experimental Biology and Medicine

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1535370216644532&domain=pdf&date_stamp=2016-04-12


In this minireview, we explore engineered environments
to study and control the effects of ECM properties on cell
activity. For both single cell and multiple cell systems, we
consider relevant ECM properties with examples of in vitro
model systems that capture these properties, highlighting
some insights gleaned from such systems. We then high-
light some applications of microengineered materials for
the emerging field of immuno-engineering.

Engineered environments for single
cell culture

Single cells experience a myriad of different signals from
their ECM (Figure 1). Cells transduce and integrate these
different factors into biochemical signals altering their
behavior.29 There are a variety of cellular apparatus
used to detect extracellular signals such as growth factors
and cytokine receptors, ion channels, cell–matrix, and cell–
cell adhesion molecules.30 Particularly, forces exerted by
and on the cells through transmembrane receptors such as
integrins play an important role through ‘‘mechanotrans-
duction’’ via the cellular cytoskeleton.31–34 Stem cells, with
their plasticity, ability to differentiate down different

lineages, and importance for regenerative medicine, are
particularly sensitive to extracellular cues and thus are the
focus of several of these studies.35–37

Matrix composition

Biochemical factors present in the extracellular space are
numerous and present a multitude of signals to cells, allow-
ing for functional complexity in cell behavior.44 A wide var-
iety of glycosaminoglycans (GAGs), proteoglycans, and
different glycoproteins such as collagens, fibronectins
(FNs), and laminins, combine together to provide a very
rich signaling environment, which varies widely between
different tissues. In fact, loss of function mutations in several
of these proteins are embryonic lethal or post-natal lethal
within four weeks,44 highlighting their importance.
However, due to the high complexity and organization, it is
significantly challenging to recapitulate aspects of such an
environment in vitro. A common strategy is adsorption45 or
chemical conjugation46 of proteins onto synthetic tissue
culture substrates. This method is more facile for studying
the effects of single components of the ECM or simple
combinations and is useful for deconstructing the roles of

Figure 1 Matrix properties affect cell behavior in vitro: elasticity—MSC morphology (and cytokine secretions) is dependent on matrix stiffness.38 Composition—MSC

differentiation is highly dependent on the matrix protein conjugated to the surface (reprinted by Lee et al.,39 Copyright (2013), with permission from Elsevier). Ligand

presentation—fibroblast focal adhesions only form on 5mm RGD functionalized gold islands with stress fibers running between adhesions (reprinted with permission by

Aydin et al.,40 copyright (2010) American chemical society). Dynamics and degradation—cell adhesion can be switched on and off by switching the conjugation of

ligands at the surface (reprinted by DeForest and Anseth,41 Copyright (2012), with permission from Wiley). Topography—substrate topography controls alignment and

epigenetic reprogramming of cells (reprinted by permission from Macmillan Publishers Ltd: Nature Materials by Downing et al.,42 copyright (2013)). Cell

Shape—modifying cell shape can affect MSC cytoskeleton, focal adhesion formation and differentiation.43 (A color version of this figure is available in the online journal.)
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different ECM components and their interactions. Both
adsorption and chemical conjugation, however, may alter
protein conformation, potentially changing protein bioactiv-
ity.47 Other strategies include the use of natural ECM com-
ponents, such as GAG or collagen gels, to fabricate tissue
culture environments48 or using decellularized matrices.49

These strategies recapture several aspects of the in vivo envir-
onment but relinquish some control over the precise envir-
onment presented to cells. Matrix composition has been
found to influence diverse aspects of cell behavior such as
extracellular signal-regulated kinases (ERK) activation by
mechanical strain in smooth muscle cells,50 endothelial cells
network formation and their response to transforming
growth factor-b,51 secretome,38 cancer progression,52 and
stem cell fate.53 We and other groups have shown previously
that for mesenchymal stem cells (MSCs), matrix composition
can direct cell differentiation and mediate how cells respond
to other cues.39,54 Two current areas of active research are the
use of cell-derived matrices to reconstitute in vitro environ-
ments55 and synthesis of matrices that can better interact with
growth factors via sequestration and other interactions.56

Ligand presentation

Cells will behave very differently depending on how the
ligand presents to the cell. This mainly has to do with
how cells interact with the proteins via focal adhesions,
clusters of intracellular proteins, and transmembrane integ-
rins.57,58 These interactions physically transfer forces
between the ECM and cells, facilitating mechanotransduc-
tion and cellular remodeling of the ECM.29,59 Cell–matrix
interactions are sensitive to ligand density, ligand spacing,
receptor clustering, and ligand availability,60 in addition to
composition. Furthermore, the pliability of proteins to cell
generated forces tunes the availability of cryptic signaling
sites.30 Several innovative methods have been developed to
control these different aspects. The use of recombinant pro-
tein fragments or peptide sequences allows for tailoring of
specific cell–matrix interactions since integrin pairs react
with specific peptide sequences31 with different affinities
and outcomes. For example, using different FN III9–10 frag-
ments with variable specificities to a5b1 integrins allows
control of a5b1-mediated MSC osteogenesis.61 Self-
assembled monolayers of alkanethiolates on gold substrates
can be used to present a more uniform interface to cells and
control ligand density and affinity.62,63 Block copolymer
micelle nanolithography,64 a technique by which very uni-
form arrangements of gold nanodots can be made, has been
used to study effects of ligand spacing and density vari-
ations and, when combined with micropatterning, the
effects of ligand clustering. The use of such methods has
revealed the different binding affinities of integrins
depending on peptide sequences65 (even depending on
cyclic vs. linear variants of Arginylglycylaspartic acid
(RGD),63 a commonly used peptide sequence from FN) or
adhesion clustering.66 Moreover, Spatz et al.67 have demon-
strated a threshold of �60 nm of ligand separation for acti-
vation of integrin function and more recently have reported
a more dominant role for local ligand density as opposed to
global.68 Finally, density of protein tethering alters the

deformations exacted on proteins by cells, altering cell sig-
naling, and MSC fate.69

Cell shape

One of the challenges of in vitro cell culture is cell hetero-
geneity and poor replicability of results. Micropatterning of
cell shape diminishes much of the heterogeneity inherent in
cell culture substrates and controls for several aspects of
cellular structure such as spread area and spatial distribu-
tion of adhesions,3 allowing for better control over experi-
ments. Furthermore, control over cell shape facilitates
geometric manipulation of the structure of the cytoskel-
eton.3,70 There are multiple methods of micropatterning
cells including lithography,19 photo-patterning,41 microflui-
dics,71 and microcontact printing.72 Micropatterning does
not have to be with integrin ligands but can utilize other
cellular components such as lipid bilayers.73 Cell shape can
determine the structure of the cytoskeleteon,70 focal adhe-
sions,74 intermediate filaments,75 internal cell organiza-
tion,76 nuclear forces,77 and histone modifications.78,79

Consequently, cell shape and size also influence cell viabil-
ity,80 stem cell multipotency,81 and fate decisions.39,82

Increasing the degree of cytoskeletal tension nudges
MSCs toward an osteogenic, rather than adipogenic fate43

and modulates integrin-mediated matrix interaction.83

Elasticity

With the elasticity of various tissues spanning orders of mag-
nitude,84 ECM elasticity is one of the most studied physical
factors influencing cell behavior. Mechanics have also been
implicated in a wide array of pathologies.85,86 Cells respond
to changes in ECM elasticity,87 often by changing their own
properties as evidenced by fibroblasts matching stiffness to
their substrates.88 Biological materials are usually heteroge-
neous in mechanical properties and often display nonlinear
elastic behavior.89 Synthetic materials such as polymeric
hydrogels and natural materials are routinely fabricated
with tunable stiffness, and materials with variable rigidities
such as micropost arrays90 have been used to probe stiffness
response as well. Various cytoskeletal components and sig-
naling pathways have been implicated in these processes
including focal adhesion kinase, Rho/Rock,35 and Yes-asso-
ciated protein (YAP)/transcriptional co-activator with PDZ-
binding motif (TAZ)91 as well as nuclear elements such as
lamin-A92 and Linker of Nucleoskeleton and Cytoskeleton
(LINC) complexes.93 Early studies showed that cell motion
and focal adhesions are regulated by substrate elasticity.21

Engler et al.94,95 demonstrated that MSC fate depends on
substrate compliance, with optimal differentiation marker
expression occurring on elasticities matching in vivo elasti-
city. Since then, the influence of substrate elasticity on mod-
ulating several aspects of cell behavior has been well
documented.96 It has further been reported that the effects
on MSCs depend on how long they are exposed to a sub-
strate and that MSC behavior is affected by their mechanical
history.97,98 The mechanism, or what exactly the cells are
responding to, is variable, since changing material stiffness
typically entails changing material porosity, matrix tethering,
and other mechanical properties. Response to mechanical
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properties has been attributed to matrix elasticity,99,100 dens-
ity of protein tethering,69 viscoelastic creep,101 traction
forces,102 and stress relaxation.103

Topography

As opposed to flat culture substrates, basement mem-
branes, and ECM components such as collagen, which
form submicron-sized fibrils, have a very hierarchical struc-
ture and are often textured, providing topographic signal-
ing cues.104 These cues, depending on their size, can interact
with integrins up to whole cells. Advances in nanofabrica-
tion have allowed the formation of nanoscale gratings,
posts, pits, aligned fibers, and other structures that can be
made isotropic, anisotropic, or in gradient form.105,106

Nanotopography can affect cell morphology, adhesion,
migration, proliferation, and differentiation, generally
through generation of anisotropic stresses in cells.106 MSC
differentiation has been reported to be guided by nanoto-
pography, for example, to the neurogenic107 or osteogenic108

lineages. Recently, Downing et al.42 have shown that micro-
grooves can modify the epigenetics and significantly
improve the reprogramming of fibroblasts, demonstrating
the large potential of topographic cues.

Dynamic and degradable environments

The constantly changing nature of in vivo ECM is well
known.52,109 As stated above, cells react to changes in
ECM properties but are affected by previous environments.
For example, there have been recent reports that MSCs
‘‘remember’’ their previous substrates97,98 for at least
10 days with regard to nuclear localization of RUNX2,
YAP, and osteogenic differentiation, although other proper-
ties such as cell area remain plastic or relatively unaffected
by previous states. This is a new field of study, however,
and more work is required to understand the mechanisms
through which cells maintain this memory and its effect on
cell behavior for longer term. Dynamic materials are hence
desirable to construe the effects of changing microenviron-
ments on cells. Switchable surfaces,110 stimuli responsive
materials,111 and photoresponsive materials41 have been
used to modulate matrix properties such as ligand pres-
entation, composition, stiffness, and cell shape during cell
culture. Furthermore, substrate degradability may be desir-
able for both probing cell behavior and for in vivo use of
engineered substrates.24,112,113 A significant challenge
remains engineering reversibility into these kinds of sys-
tems as opposed to one-directional changes.114

Other factors such as dimensionality,23,115 mechanical
load, and shear flow are also potent regulators of cell behav-
ior. Cell behavior is typically very different between 2D and
3D environments as evidenced by several studies.102,116,117

Although it is extremely challenging to control for multiple
aspects of ECM structure in the same experiment, it is
important to evaluate data in context of all the appropriate
properties of the system and how they relate to the relevant
in vivo environments. Different components such as
hydrogels and nanopatterning or micropatterning can be
combined to study the effects of multiple factors concur-
rently.39,40 In fact, studies combining multiple cues often

reveal crosstalk and interplay among different factors.59 For
example, MSC response to stiffness is dependent on matrix
composition in terms of adhesion,83 differentiation,39,54 and
therapeutic potential.38 For this reason, it is imperative to take
the whole biophysical system into consideration before
making conclusions about the effects of certain parameters.

Peer pressure: The influence
of multicellular interactions

In addition to all the factors influencing single cells during
culture, there are multiple additional effects in play when
multicellular constructs are considered together (Figure 2).
In this situation, the position of a cell relative to other cells,
cell–cell interactions, paracrine signaling, and interactions
with different cell types act to instruct cellular outcomes
and coordinated cell behavior. This is particularly apparent
during development where the relative positions of cells
can dictate their specification and differentiation.6

Although scaffolds for studying these kinds of behaviors
are typically on a larger scale than those for single cells,
great care must be taken to optimize the experimental par-
ameters and define the specific interactions being studied in
order to deconstruct specific cues and determine their pre-
cise influence. Here, we present a brief overview of some of
these factors.

In a typical in vivo niche, there are multiple cell types in
contact in different ways. Cells in contact interact through
cadherins; a family of cell adhesion molecules which medi-
ate interactions. Cadherin based cell–cell contacts are
involved in a plethora of biological processes such as devel-
opment, differentiation, and disease.118 Multiple platforms
have been developed wherein homo- and heterotypic cell–
cell contacts can be controlled from a single cell–cell contact
up to large scale co-cultures.119 Cells in contact have been
shown to mechanically couple together,120 allowing for
large scale collective cell migration.121 Tseng et al.122 have
shown that the organization of intercellular junctions are
dependent on the ECM architecture. Studying interactions
of heterotypic cells has shown interesting phenomena such
as natural cell sorting due to adhesion effects123 and self-
assembly of multicellular structures.124 Artificial bound-
aries between different cell types allow the investigation
of interfacial interactions (in tumor-stroma, for example).125

Cohesive forces between cells stabilize them in contact.
Differences in adhesion between homophilic and heterophi-
lic cell–cell contacts may cause cell aggregation and sort-
ing,126 analogous to surface tension in fluids.127 The shapes
of individual cells within aggregates depend on their pos-
ition within the aggregate, which specifies their cortical ten-
sion and degree of cell–cell adhesion.128 However, several
other factors change at the surfaces of patterned cell aggre-
gates, thereby complicating the interpretation of behavior.
Some of these factors are mechanical stresses due to traction
forces,129,130 cytokine gradients caused by uneven distribu-
tion of cells,131 and differences in surface curvature. Often,
these factors feed into each other, giving an extra layer
of complexity which can, however, be elucidated by usage
of more controlled patterning methods such as the use of
microfluidics to precisely control cytokine gradients.132
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In addition to deconstructing the influences of different
factors in the microenvironment, engineered matrices that
can simultaneously control multiple cues may be used to
optimize desired outcomes. For instance, 3D printing tech-
niques have been developed that can control matrix com-
position, topography, elasticity, and spatial organization of
different cell types which have been used to print vascular-
ized, multiple cell-laden constructs.133

Micropatterning techniques
for immune engineering

With the complexity and various roles of the immune
system, immune cells have evolved very sophisticated
machinery to respond to different situations with suitable
behavior. For example, macrophages have both pro-inflam-
matory and pro-healing, anti-inflammatory phenotypes
with significant plasticity between them. These phenotypes
are regulated according to both secreted factors and the
physical environment, with dysregulation occurring in can-
cer and obesity, for example.134 Understanding interactions
of immune cells with biomaterials is crucial for understand-
ing and controlling foreign body reactions for implants and
is a major field of study.135 Macrophage adhesion, activa-
tion, and fusion, contributing to fibrogenic reactions to for-
eign bodies, are dependent on culture environment,136,137

such as stiffness138 and cell shape139 and may cause macro-
phages to remodel their ECM.140 Furthermore, ECM effects
have been studied in inflammation, wound healing, immu-
nomodulation, and immune response to cancer.141,142

With the rise of immunoengineering, and the potential
for controlling immune behavior across a host of processes,
it is important to study, and make use of, the modulation of
immune cells via ECM. There have been a few reports of the
use of patterning strategies to modulate immune cells.
Micropatterning of cell–cell junctions has been used to
study cell interactions such as immunological synapses
(IS), the junction between T lymphocytes (T-cells) and anti-
gen presenting cells. Doh and Irvine143 have shown, using
micropatterning of T-cell receptors (TCR) and intercellular
adhesion molecules in different structures, that T-cell
assembly of ISs was strongly dependent on the unique
physical structure of the synapse with stable interactions
on focal spots of TCR ligands. More recent work by
Tabdanov et al.144 using similar methodology showed the
effects of structure of ISs on the cytoskeletal mechanics of T-
cells. Mossman et al.145 have used nanopatterning tech-
niques to constrain IS formation, elucidating a correlation
between radial TCR position and signaling.145 Adhesive
protein micropatterns have been shown to affect fibrogenic
activation of macrophages, with relevance to foreign body
response.146 Moreover, patterning of other cell components,
such as lipid bilayers, can be used to further probe these
systems.147

Single cell micropatterning has also been used with
macrophages, white blood cells that perform phagocytosis.
Patterning of cell shape was used by McWhorter et al.139 to
modulate the phenotype of macrophages between pro-
inflammatory (M1) and pro-healing (M2) states by control-
ling elongation of single macrophages. Increase in cell

Figure 2 Interactions of multiple cells. Several factors are introduced when multiple cells are considered together including cell–cell contact, contact between

different cell types, the introduction of interfaces and curvature, and cytokine gradients across the system. These factors control effects such as collective cell behavior

and cell sorting, for example. (A color version of this figure is available in the online journal.)
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aspect ratio led to enhancement of M2-related cytokines
and polarization through an actomyosin contractility
dependent mechanism. More recently, micropatterning of
macrophages was used to study the cytoskeletal effects of
edema toxin148 where reproducible control over the actin
cytoskeleton was used to normalize cell response to toxin.

Outlook

There are several reasons to implement physiologically rele-
vant physical and chemical properties for in vitro scaffolds
including the ability to study cells in a more complex ‘‘nat-
ural’’ environment, the development of more representative
models to supplement or replace animal models, and
the development of tissue engineering constructs which
can be implanted and interfaced with existing tissue.17

Studies using systems with tunable properties such as stiff-
ness, composition, and cell shape will reveal dramatic
changes in cell behavior compared to standard culture
dishes, often with the recurring theme of large changes at
physiologically relevant matrix properties. However,
studies with multiple cues often reflect a coupling between
these different factors, complicating the establishment of
parameter–function relationships. Going forward, develop-
ing platforms that can capture the complexity of the native
ECM while also having the ability to quantitatively, pre-
cisely, and specifically tune matrix properties to deconstruct
and control the effects of various cues, are crucial for
in vitro study of cells, development of model systems and
development of scaffolds for tissue engineering and regen-
erative medicine applications.
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