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Abstract 

Osteochondral tissue represents a complex biochemical and biophysical gradient between two 

distinctly different types of tissue. Its poor regeneration capabilities necessitate tissue 

engineering intervention; however, its complex structure and composition pose an immense 

engineering challenge. Though bone and cartilage engineering separately have seen success, 

fabricating the graded interface between these two dissimilar tissue types requires 

understanding and collaboration between multiple often-disunited disciplines. This review 

showcases innovative tissue engineering strategies utilised for fabrication of osteochondral 

interfaces in an attempt to bridge this gap, and highlights the potential of biofabrication 

techniques – namely 3D bioprinting – in providing a path towards future advancement in 

osteochondral and interfacial tissue engineering. 
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1.0 Introduction 

Osteochondral tissue encompasses the transition from stiff bone to soft articular cartilage at the 

end of long bones. It is vital in articular joint function as it aids in shock absorption, load 

distribution and stable motion [1-4]. Articular cartilage is avascular and aneural, making 

damage – from trauma, athletic injuries, pathological conditions or age-related degeneration – 

incredibly challenging to repair for the body [5, 6]. Inadequate regeneration leads to the wound 

site becoming necrotic, leaving a permanent defect [7]. Damage spreads to underlying bone 

and leads to degenerative joint disease and/or osteoarthritis [8]. The resulting loss in mobility 

is detrimental to patients’ quality of life. 

Over the last 15 years additive manufacturing techniques like 3D bioprinting have provided a 

paradigm shift in tissue engineering (TE) and regenerative medicine by allowing rapid 

prototyping of constructs for tissue repair. Traditional approaches involved inoculating pre-

formed (bio)polymer or decellularized tissue scaffolds with cells, allowing little-to-no control 

over local features. 3D bioprinting enables greater spatiotemporal control of local scaffold 

compositions, mechanics, cell populations and biochemical localisation [9-11]. Though this 

has allowed greater biomimicry, recapitulation of complex tissue with functional attributes 

attained through biochemical and biophysical gradients, such as the osteochondral interface, 

remains a challenge.  

Current osteochondral repair strategies yield negative side-effects and poor long-term success 

[12-14]. TE strategies require restoration of all elements comprising osteochondral tissue: 

bone, cartilage, and the interface [15]. Though separately bone and cartilage engineering have 

come far, osteochondral repair requires understanding and recapitulation of the complex 

interactions between the two distinctly different tissues. Several approaches have attempted to 

mimic the hard-to-soft gradient using bi- and multi-phasic biomaterials design [16-19]. 

Advancements in additive manufacturing techniques hold the key to improved osteochondral 

tissue repair.  

 

 

1.1  Structure of the osteochondral interface 

Bone and cartilage are structurally, mechanically, physiochemically, and biologically very 

different tissues. Osteochondral interfaces represents a smooth, continuous transition in 

structure, composition, and function. Bone extracellular matrix (ECM) consists primarily of 

collagen I fibrils, hydroxyapatite, and structural proteins, e.g., osteocalcin, osteopontin, bone 

sialoprotein and thrombospondin [20, 21]. It is highly vascularised. Cell populations present 

include mesenchymal stem cells (hMSCs), osteoblasts, osteoclasts, and endothelial cells [22, 

23]. Subchondral bone and calcified cartilage have elastic moduli of 3.9 ± 1.5 GPa and 0.32 ± 

0.25 GPa, respectively [24].  
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Hyaline cartilage comprises an ECM rich in collagen II and proteoglycans [17, 25]. 

Chondrocytes make up the entire cell population but only 2% of total tissue component. 

Collagen orientation changes with height, from more vertical near subchondral bone to more 

horizontal near the surface (Figure 1). This facilitates articulation and proper load transduction 

to the bone. Chondrocyte shape, size, density, and orientation also change with height, 

becoming increasingly populated and flattened closer to the surface [25, 26]. As chondrocyte 

populations change, so do their pericellular molecular environments. For example, 

hypertrophic chondrocytes at the surface produce a collagen X-rich matrix. Types of 

proteoglycans and glycosaminoglycans (GAGs), and their concentrations also change with 

height. High proteoglycan content near bone (deep zone) provides the greatest compressive 

resistance. Stiffness changes from 600 ± 50 kPa in the deep zone to 240 ± 50 kPa near the 

surface [27, 28]. Stiffness is reported to increase with loading frequency and amplitude, owing 

to cartilage’s viscoelasticity [29]. Osteochondral tissue thus consists of several biochemical, 

 

Figure 1: Schematic showing the complex nature of the osteochondral interface (top) and tissue 

engineering approaches used to mimic the changing properties (bottom). Bone and cartilage 

contain very different properties and compositions, and engineering of the osteochondral interface 

requires understanding and recapitulation of complex biochemical and biomechanical interactions. 

Traditionally, layers of scaffolds promoting bone and cartilage formation were adhered together 

(bottom left), but recently there is a shift toward continuous graded scaffolds (bottom right).   
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biomechanical, and cellular gradients which play key roles in its structure and function. These 

complex arrangements make it an immense challenge to recapitulate in vitro.   

 

 

1.2 Current clinical repair strategies for osteochondral injury 

Clinical strategies for cartilage or osteochondral repair include arthroplasty, microfracture, 

autografts, allografts, and autologous chondrocyte implantation. However, it is widely agreed 

that these yield inadequate outcomes [12-14]. Microfracture – involving debridement and 

subchondral drilling to stimulate bone marrow – causes donor site morbidity, lasting pain, and 

results in the formation of weaker, less viscoelastic fibrocartilage [18, 30]. As of 2016, the 

reported 5-year re-surgery rate for microfracture was an unacceptable 30-50% [31]. 

Mosaicplasty, wherein an autograft is taken from a non-load-bearing site, results in donor-site 

morbidity, and is limited by the size of graft that can be safely taken [32]. Allografts are limited 

by donor supply and risk disease transmission. Both allografts and autografts require 

topography matching and exhibit long-term failure due to poor integration [31, 33]. Though 

chondrocyte implantation has shown promise, it suffers from chondrocyte de-differentiation 

post-isolation and instability of cells at defect sites [34, 35]. Use of a scaffold, i.e., matrix-

assisted cell implantation (MACI), overcomes this by ensuring chondrocytes remain at the 

defect site, however MACI scaffolds fail to address the different properties and gradient nature 

of bone and cartilage comprising osteochondral tissue [36]. 

 

1.2.1 To scaffold or not to scaffold 

Bone is highly vascularised and has relatively high osteoclast and osteoblast populations which 

are able to easily degrade implanted scaffolds and deposit bone matrix. Contrastingly, cartilage 

is largely avascular and hypocellular, thus lacks the ability to readily degrade scaffolds [37]. It 

has been reported that presence of scaffolds at implantation sites over time can actually prevent 

hyaline cartilage regeneration and promote fibrocartilage growth [38]. Further, there are 

concerns surrounding immunogenicity and long-term effects of degradation products. This has 

led some to argue for development of scaffold-free approaches for chondrocyte or stem cell 

delivery to defects [37-39]. Though outside the focus of this review, it is important to 

acknowledge this perspective. Majority of literature agrees with requirement of a scaffold for 

osteochondral TE whilst acknowledging the necessity to understand and harness the body’s 

natural regeneration capabilities [36, 40, 41].  

Scaffolds are required to be highly porous to allow nutrient and metabolic waste transport, and 

accommodate cell infiltration [42, 43]. They should support cellular attachment, proliferation, 

and differentiation. Scaffold mechanical properties (e.g., stiffness) must match those of the 

tissue being modelled. If implanted, they should not elicit an adverse immunological response 

[44, 45]. For surgical applications, it is beneficial that scaffolds be injectable for minimally 

invasive application. They should be biocompatible, ideally with tunable degradation rate to 

match the cell or tissue growth [45].  
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1.3 Tissue engineering advancements in replicating osteochondral tissue  

In the last 20 years, there has been a shift towards implementation of bi- or multi-phasic 

scaffolds for more accurate native osteochondral tissue recapitulation. Two or more 

phases are used – one promotes cartilage formation, and another promotes bone formation. In 

the early 2000s, this consisted of joining two or more separate layers via sutures or glue, 

resulting in abrupt soft-to-hard transitions [46-49]. These were problematic for numerous 

reasons including delamination over time, unwanted adhesive remnants, adhesives disrupting 

cell and nutrient movement, and sutures causing damage to wound sites. Additionally, they did 

not recapitulate the gradient nature of the interface which is essential for functional force 

transfer during mechanical loading.  

Recently, there is a trend towards continuous bi- and multi-phasic gradient scaffolds containing 

graded physical or biochemical variations. Though decellularised osteochondral tissue 

provides excellent architectural mimicry, dependence on donors, harsh processing and limited 

modification flexibility render them relatively impractical [50]. Hydrogels overcome these and 

can provide greater control over features. Physical gradients are commonly achieved via 

stiffness variation of hydrogels, or incorporation of osteo-inductive and -conductive calcium 

phosphate micro-/nano-particles in graded concentrations (Figure 2) [51-58]. Chemical 

gradients are generally achieved via local release of osteo- and chondro-inductive factors bone 

morphogenic protein-2 (BMP-2) and transforming growth factor-β1 (TGF-β1) to drive 

osteochondral differentiation of stem cells. Commonly utilised scaffold materials include 

printable hydrogels such as alginate, collagen, gelatin methacryloyl (gelMA), polycaprolactone 

(PCL), poly(lactic-co-glycolic acid) (PLGA), poly(lactic-acid) (PLA)  [55, 56, 59, 60]. Below 

we look at examples of scaffolds where local biophysical or biochemical properties are varied 

whilst maintaining matrix continuity.  

 

 

  

Figure 2: Gradients in scaffolds can be formed via incorporation of chondrogenic and osteogenic 

biochemicals or by physically tuning hydrogel properties.  
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1.3.1 Scaffolds with biophysical gradients 

Physical gradients in osteochondral scaffolds are achieved via incorporation of inorganic 

nanoparticles (e.g. CaP, HAP, TCP). Bittner et al. employed multichannel extrusion 3D printing 

to fabricate porous PCL and PCL-hydroxyapatite (HAP) scaffolds with ceramic content 

gradients [54]. HAP nanoparticles (208 nm) were physically combined with PCL powder at 0, 

15 and 30 wt%, then extruded layer-by-layer to fabricate mesh-like scaffolds with varying 

mineral content. Scaffold porosity was controlled by printing droplets of the same material 

between layers. MicroCT imaging verified mineral content gradient and uniaxial compression 

testing showed stiffness variations. Cell activity and tissue-integration capabilities were not 

explored. Similarly, Liu et al. formed collagen scaffolds with gradient-like nano-HAP 

distribution via in situ crystallisation of diffused Ca2+ and PO4
3- ions [61]. Again, cell activity 

was not explored. These strategies are representative of a large portion of current literature for 

engineering gradient scaffolds for osteochondral TE. 

In an alternative approach, Singh et al. fabricated silk fibroin scaffolds with a seamless interface 

of regions presenting different biophysical cues to laden cells [62]. Higher β-sheet content in 

silk fibroin fibres formed stiffer regions (40 kPa) more conducive to seeded osteocyte 

maturation, whereas lower β-sheet regions were less stiff and more amenable for seeded 

chondrocyte growth. Similarly, Cross et al. explored cell activity in gradient scaffolds 

fabricated from cell-adhesive gelMA and non-cell-adhesive methacrylated-kappa-carrageenan 

(MκCA) [63]. Equal amounts were pipetted into custom wells (10 mm length), then photo-

crosslinked to form covalently crosslinked structures with passive gradients formed via 

electrostatic interactions between the two hydrogels. Gradients were tuned by varying volumes 

of each hydrogel and idle time before crosslinking. Encapsulated hMSCs were more spread in 

gelMA regions after three days indicating descent towards osteogenic lineage, while those in 

MκCA regions showed rounded morphology indicating chondrogenic potential. Nanosilicate 

addition enhanced rheological stability but negligibly influenced cell morphology. Physically 

combining hydrogels with varying bioactive inorganic component concentrations, stiffnesses 

or elicited cell-behaviour have been demonstrated as effective strategies in fabricating 

osteochondral scaffolds.  

 

1.3.2  Scaffolds with biochemical gradients 
An alternative approach for osteochondral TE is encapsulation and spatial release of 

biochemical factors which promote stem-cell chondrogenesis and osteogenesis. Gao et al. 

employed layer-by-layer printing using a copolymer hydrogel based on N-acryloyl 

glycinamide and N-[tris(hydroxymethyl)methyl] acrylamide [64]. TGF-β1 was encapsulated 

in the top layers in a gradient fashion for chondrogenesis, and β-TCP in the bottom layers for 

osteogenesis. Although separately TGF-β1 and β-TCP incorporation enhanced hBMSC 

chondrogenesis and osteogenesis, formation of an osteochondral gradient was not explored. 

Nevertheless, this demonstrates potential for spatial control of cell activity for osteochondral 

tissue formation.  

Gurkan et al. bioprinted micro-droplets (~300 µm diameter) of MSCs and growth-factors 

encapsulated in photocurable gelMA for in vitro osteochondral tissue formation [65]. Gene 

expression analyses showed droplets containing BMP-2 directed MSCs towards an osteogenic 

lineage, while TGF-β1 droplets directed them towards a chondrogenic lineage within the same 

construct. The interface was formed via deposition of each type of droplet in a jagged zipper-
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teeth formation (Figure 3A). Though fluorescent tagging showed formation of a chemical 

gradient, MSC behaviour at the interface was not explored.  

Wang et al. generated biochemical gradients inside alginate and silk fibroin hydrogels via 

encapsulation of growth-factor loaded microspheres [66]. They encapsulated osteo-inductive 

BMP-2 and chondrogenesis-inductive insulin-like growth factor I (rhIGF-I) inside PLGA and 

silk fibroin microspheres to achieve linear gradients of the two growth factors to promote 

hMSC osteochondral differentiation in vitro. Though increasing BMP-2 concentration led to 

enhanced osteogenesis along the gradient, rhIGF-I alone was not found to influence 

chondrogenesis. Rather, it enhanced osteogenesis. Although unable to generate osteochondral 

interfaces, this study demonstrated potential for spatiotemporally controlled growth factor 

release.  

In a hybrid approach, Castro et al. employed stereolithography printing to fabricate PEG-Da 

scaffolds with nano-HAP for directing osteogenesis and TGF-β1 for chondrogenesis [67]. 

Scaffolds consisted of 3 layers. 20% nano-HAP in the hydrogel for subchondral bone, 10% 

nano-HAP for calcified cartilage, and 10 ng.mL-1 TGF-β1 in PLGA-nanocapsules for the 

cartilage. Though overall upregulation of chondrogenic and osteogenic genes was reported, 

gradient-like ECM deposition was not explored.  

 

 

1.4 Biofabrication as a tool to control interfaces in osteochondral tissue 

3D bioprinting allows rapid prototyping of 3D structures and has provided a paradigm shift in 

TE and regenerative medicine by helping overcome some of their greatest challenges. First, it 

allows unprecedented spatiotemporal control over scaffold architectures and cell populations, 

facilitating more accurate biomimicry. Second, processes can be largely automated, allowing 

scalability and potential to overcome donor shortages [68, 69]. Biofabrication may hold the 

key to TE advancements for improved osteochondral engineering.  

3D bioprinting involves 3 basic steps: 1) Generation of a 3D CAD model (manually or  via CT, 

MRI, X-ray, etc.) 2) Generation of slice-by-slice code (g-code) which communicates the 

desired result to the 3D printer. 3) Layer-by-layer fabrication of the structure. Any post-printing 

treatments are then carried out. Printing techniques are characterised based on how the 

fabrication is done. The following section looks at promising 3D bioprinting techniques for 

osteochondral TE.    

 

1.4.1 Inkjet printing 

Inkjet bioprinting (Figure 3 A) deposits precise, controllable droplets of bio ink which are 

assembled layer-by-layer to generate 3D structures [70]. It is subclassified into thermal or 

piezoelectric based on droplet generation mechanism. Inkjet printing’s advantages include low 

cost, easy setup, and high speed [11, 71]. Disadvantages include frequent nozzle clogging, high 

shear and thermal stresses, and possible cell membrane disruption [11]. 
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Development of bioinks with appropriately low shear moduli and adequate post-deposition 

stability without negative impacts of cell activity remains a challenge. Gao et al. reported inkjet 

bioprinting-based fabrication of poly(ethylene-glycol) (PEG)-based scaffolds for MSC 

osteogenesis and chondrogenesis [72]. PEG modified with acrylated RGD and matrix 

metalloproteinase-sensitive peptides enhanced osteogenesis and chondrogenesis. 222 layers, 

each 18 µm thick, were printed in under 4 minutes to generate cylindrical constructs 4 mm 

thick and wide. Bedell et al. evaluated printing capability of gelMA-HAMA and gelMA-β-TCP 

composites via inkjet, extrusion and digital light processing for osteochondral TE [60]. 

Although osteogenic and chondrogenic differentiation were observed, there was no real 

relationship between differentiation and the inclusions. Further, incorporation of β-TCP 

significantly impacted cell encapsulation efficiency and in all cases, composites required 

stabilisation with xanthan gum or nanocellulose fibres for printability. Though inkjet printing 

allows controlled high precision deposition, advances in compatible bioinks are required for 

osteochondral tissue fabrication. 

Another droplet-based technique, microvalve printing, which combines a triaxial movable 

stage and multiple pneumatically-operated print-heads, has shown potential for osteochondral 

TE. Celik et al. used this technique to bioprint ADSC-spheroids transfected with microRNAs 

to induce differentiation – miR148b for osteogenesis, and miR-140 and miR-21 for 

chondrogenesis – to produce scaffold-free osteochondral interfaces [73]. However, this process 

is extremely difficult to scale up. Further, bioink compatibility and nozzle clogging remain 

major drawbacks [74].  

 

1.4.2 Laser-assisted printing 

Laser-assisted bioprinting (LAB) utilises (near-) UV wavelength lasers to deposit bioink 

droplets onto a substrate. Focused laser pulses stimulate a ribbon which consists of layers of 

an energy absorbing material, followed by a donor material, followed by the bio-ink. Upon 

irradiation with the laser, the energy absorbing material causes vaporises the donor layer, 

creating a high-pressure bubble that causes bioink droplets to be propelled towards a substrate 

[75, 76]. LAB achieves resolutions up to picometres. Unlike most techniques, it is performed 

without nozzles, eliminating shear stresses and clogging [71]. Preparation of the ribbon, 

however, is time-consuming and becomes increasingly complex with multiple cell lines. 

Further, the effects of the high energy laser on biological matter are not fully understood [71, 

77]. Due to these drawbacks, to our knowledge this technique has not been utilized in 

fabrication of osteochondral tissue.  
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Figure 3: Common 3D bioprinting techniques and example scaffolds generated. A) Inkjet printing is 

able to deposit droplets, which can be layered to generate 3D structures. B) Laser assisted bioprinting 

generated droplets with a high energy laser pulse and deposits them onto a substrate. C) 

Stereolithography locally cures bioink inside a reservoir. The stage moves vertically to generate 3D 

structures. D) Extrusion printing can either be unsupported, which is limited to mesh-like structures 

using log-like filaments, or embedded, which used a granular support to omnidirectionally deposit 

bioinks in complex geometries. Blue – bioinks for forming the cartilage phase in fabricated scaffolds. 

White/grey – bioinks for forming the bone phase in fabricated scaffolds.  

 

1.4.3 Stereolithography printing 

Stereolithography-based printing techniques (Figure 3 C) utilise a focused light source (UV, 

infrared, laser) photo-crosslink material in a layer-by-layer fashion to yield a 3D structure [78]. 

It generates structures with high precision (1-2 µm), and is nozzle- and contact-free, so does 

not mechanically damage biological matter. Disadvantages include high setup costs, toxicity 

from photo-curing agents and inability to form horizontal gradients [79, 80]. 

Chen et al. demonstrated stereolithography for in vivo osteochondral defect repair in rabbits 

[81]. They formed implantable scaffolds with photocurable gelMA bioink supplemented with 
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MSC exosomes and cartilage ECM containing radially oriented channels. Analyses at 6 and 12 

weeks showed enhanced chondrocyte migration and cartilage regeneration, along with 

formation of ossified subchondral bone tissue. Due to the nature of the technique however, 

scaffold geometry is limited to simple shapes, such as the cylindrical scaffolds in this study. 

Similarly, in the aforementioned study by Castro et al. scaffolds were limited to a mesh-like 

cylindrical structure [67]. Curing-laser penetration further limits construct height. 

 

1.4.4 Extrusion bioprinting 

Extrusion bioprinting encompasses techniques in which continuous bioink filaments are 

extruded pneumatically or mechanically (screw or piston) through a nozzle. It can be classified 

into two sub-categories: 1) supported – where the ink is extruded into a support matrix ( 

granular hydrogel); and 2) unsupported – where the ink is extruded into air or an aqueous 

medium, supported only by itself.  

Filament deposition has been utilised for fabrication of osteochondral scaffolds. Mesh-like 

structures  with controllable porosity have been generated, with bio-inks containing 

encapsulated osteocytes and chondrocytes deposited in layer-wise fashion to recapitulate the 

bone-cartilage transition [82]. Similarly, varying concentrations of osteo-inductive calcium 

phosphate powders or other additives which drive osteogenic or chondrogenic phenotypes can 

be added to bioinks containing MSCs [51-58].  

Syringe-based extrusion has successfully provided advancements in printing softer, low 

viscosity hydrogel bioinks. However, several rheological and chemical constraints of hydrogels 

disallow generation of 3D structures without loss of print fidelity when printing with no 

supports. Inks must be soft enough for extrusion without excessive shear forces – which may 

damage biological matter – but remain stable enough after printing to not distort under gravity 

[83-85]. Even with development of new bioink formulations, there remain inherent on 

geometries, such as inability to form overhanging structures, and reliance on high-viscosity 

inks. Scaffold geometries are limited to mesh architectures generated via layer-wise deposition 

of log-like filaments (Figure 3 D) [56, 57, 86]. To overcome limitations of extrusion 

techniques, musculoskeletal tissue engineers have shown increased interest in embedded 

extrusion printing wherein bioinks are extruded into support materials. 

 

 

1.4.4.1 Embedded extrusion printing 

Perhaps the most influential iteration of embedded extrusion printing is freeform reversible 

embedding of suspended hydrogels (FRESH) developed by Feinberg’s group in 2015 [87]. It 

allows omnidirectional printing of soft tissue by deposition of hydrogel bioinks (collagen, 

alginate, etc.) inside a thermoreversible gelatin granular support bath which acts as a Bingham 

plastic during syringe-based printing. The support bath melts at 37°C, so can be removed while 

keeping cells alive, allowing fabrication of complex biological structures with resolutions of 

200 µm. In 2019, FRESH2.0 demonstrated higher resolutions (200 – 20 µm) by reducing 

granular bath particle-size and polydispersity [88]. The technique has since been widely 

adopted and modified by the biofabrication community. For example, the Angelini group has 
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done considerable research on behaviour, modification and characterisation of granular support 

baths, including new materials and laden cell behaviour [89-91]. Jalandhra et. al 

omnidirectionally printed a ceramic bone-mimetic ink in granular suspensions optimised for 

chondrogenesis to spatially direct MSC osteochondral differentiation [92]. Various others have 

utilised this technique with bioinks of gelatin, collagen, alginate, agarose and cell spheroids 

[93-95]. Cidonio et al. printed laponite-gellan inks in agarose support baths for bone scaffold 

fabrication [95]. 

   

Being a nozzle-based technique, clogging is still a valid concern. Cell viability during longer 

printing times must be considered for generation of larger cellular constructs. The ability to 

print multiple bioinks at once, with isolated crosslinking mechanisms, inside biochemically 

and biomechanically heterogeneous support baths hold the key towards accurate recapitulation 

of complex native tissue. 

 

1.5 Conclusion and outlook 

Advancements in techniques which allow biofabrication of scaffolds with graded variations in 

biochemical and biomechanical properties have allowed more accurate biomimicry in 

osteochondral tissue engineering. Development of next generation biomaterials and utilisation 

of the full capacity of bioprinting techniques hold the key to recapitulating the complex 

structural and compositional heterogeneity of interfacial tissues. Key properties include 

compatibility with biofabrication techniques, the ability to manipulate local properties whilst 

maintaining matrix continuity to recapitulate the functional biomechanical and biochemical 

properties of native osteochondral tissue and practical scalability in order to be viable 

therapeutics. This requires a shift away from focusing on either bone or cartilage, but a deeper 

understanding of osteochondral tissue as a unit.   
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